
VARIOUS TOOLS FOR COMPARATIVE STATICS

1. The chain rule (or total derivative) for composite functions of several
variables

1.1. Chain rule for functions of two variables. When y = f (x1, x2) with x1 = g(t) and x2 =
h(t), then

d y

d t
=

∂f

∂x1

d x1

dt
+

∂f

∂x2

d x2

dt

=
∂f

∂ x1

d g (t)
dt

+
∂f

∂x2

d h (t)
dt

(1)

This is usually called the total derivative of y with respect to t.

1.2. Example. Let the function y = f(x1, x2) be given by

y = f (x1, x2 ) = x2
1 + x3

2

with

x1 (t) = t2 + 2 t + 1

x2 (t) = 3 t

Then

∂f

∂x1
= 2 x1 ,

∂f

∂x2
= 3 x2

2

d x1

dt
= 2 t + 2 ,

d x2

dt
= 3

⇒ d y

d t
= (2 x1) (2 t + 2) + (3x2

2) (3)

= (2 t2 + 4 t + 2) (2 t + 2) + (27 t2) (3)

= 4 t3 + 4 t2 + 8 t2 + 8 t + 4 t + 4 + 81 t2

= 4 t3 + 93 t2 + 12 t + 4

If we multiply out the expression for y = f(x1, x2) substituting x1(t) and x2(t) we obtain

y = f (x1, x2 ) = x2
1 + x3

2

= (t2 + 2 t + 1)2 + (3 t)3

= t4 + 2 t3 + t2 + 2 t3 + 4 t2 + 2 t + t2 + 2 t + 1 + 27 t3
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Taking the derivative with respect to t we obtain
df

dt
= 4 t3 + 6 t2 + 2 t + 6 t2 + 8 t + 2 + 2 t + 2 + 81t2

= 4 t3 + 93 t2 + 12 t + 4

1.3. In-class exercises. Find the total derivative of each of the following with respect to t.
(1)

y = f (x1, x2 ) = x2
1 + x3

2

x1 (t) = t2

x2 (t) = 2 t

(2)
y = f (x1, x2 ) = x2

1 + x2
2

x1 (t) = t2 + 2 t

x2 (t) = 2 t + 1

(3)
y = f (x1, x2 ) = x2

1 − x1 x2 + x2
2

x1 (t) = t2 + 2 t + 3

x2 (t) = 2 t − t2

(4)
y = f (x1, x2, x3 ) = x2

1 + x2
2 + 2 x2

3

x1 (t) = t2 + 2 t

x2 (t) = 2 t

x3 (t) = t2 − 5 t

(5)

y = f (x1, x2 ) =
x2

1 + x2
2

x1 + x2

x1 (t) = t2 + 2 t

x2 (t) = 2 t + 1

2. Directional Derivatives

2.1. Idea. If y = f(x1, x2), the partial derivatives, ∂f
∂x1

∂f
∂x2

measure the rates of change of f(x1, x2),
in the directions of the x1 - axis and the x2 - axis, respectively. We can also measure the rate of
change of the function in other directions. Consider a particular point in the domain of f and denote
it ( x0

1 , x0
2 ) . Any non-zero vector (h, k) is then a direction in which we move away from the point

( x0
1 , x0

2 ) in a straight line to points of the form

(x1, x2) = (x1(t), x2(t) ) =
(
x0

1 + th, x0
2 + tk

)
(2)

Given any initial point ( x0
1 , x0

2 ) and any direction (h, k), define the directional function g by
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g (t) = f ( x0
1 + t h , x0

2 + t k ) (3)
The derivative of this function is

d g

d t
=

∂f

∂x1

d x1

dt
+

∂f

∂x2

d x2

dt

=
∂f

∂x1
(x0

1 + t h , x0
2 + t k) h +

∂f

∂x2
(x0

1 + t h , x0
2 + t k) k

(4)

Now let t = 0 so that we are at the point ( x0
1 , x0

2 ) . Then we obtain

d g

d t
(0) =

∂f

∂x1
(x0

1 , x0
2) h +

∂f

∂x2
(x0

1 , x0
2 ) k (5)

If the vector (h, k) has length 1, the derivative of f in the direction (h, k) is called the directional
derivative of f in the direction of (h, k) at ( x0

1 , x0
2 ) . Specifically, the directional derivative of f(x1,

x2) at ( x0
1 , x0

2 ) in the direction of the unit vector (h, k) is

Dh,k f(x0
1, x

0
2) =

∂f

∂x1
(x0

1, x0
2)h +

∂f

∂x2
(x0

1, x0
2)k (6)

Note that when the length of (h, k) is one, a move away from (x0
1, x0

2) in the direction (h, k)
changes the value of f by approximately Dh,kf(x0

1, x0
2). Also notice that the directional derivative

is the product of the gradient of f and the vector (h, k).

2.2. Example. Consider the function f(x1, x2) with the following direction and initial point.

f(x1, x2) = x2
1 + 3x2

2

Direction = (2, 5)

Point = (1, 1)

First normalize the direction vector. Because the length of the vector is
√

29 we can normalize it
as
(

2√
29

, 5√
29

)
. Then find the gradient of f as

f(x1, x2) = x2
1 + 3x2

2

∂f

∂x1
= 2x1

∂f

∂x2
= 6x2

Evaluated at (1,1) we obtain

∂f

∂x1
= 2

∂f

∂x2
= 6

The directional derivative is then given by

(
2 6

)
(

2√
29

,
5√
29

)
=

34√
29
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3. More general chain rules

3.1. General form of the chain rule. Let y = f(x1, x2, ... xn) and let x1 = g1 (t1, t2, ..., tm),
x2 = g2 (t1, t2, ..., tm), ... , xn= gn (t1, t2, ..., tm) where t is an m-vector of other variables upon
which the x vector depends. Then the following holds

∂y

∂tj
=

∂y

∂x1

∂x1

∂tj
+

∂y

∂x2

∂x2

∂tj
+ · · · +

∂y

∂xn

∂xn

∂tj
, j = 1, 2, · · · , n

=
∂f

∂x1

∂x1

∂tj
+

∂f

∂x2

∂x2

∂tj
+ · · · +

∂f

∂xn

∂xn

∂tj
, j = 1, 2, · · · , n

(7)

3.2. Example. Consider the function y = f(x1, x2) along with the auxiliary functions x1(z, w) and
x2 (z, w)

y = f (x1, x2) = 3x1 + 2x1 x2
2

x1 (z, w) = 5z + 2z w

x2 (z, w) = z w2 + 3w

where t1 = z and t2 = w from equation 7 . We can find the partial derivative of y with respect
to z using equation 7 as follows.

∂ y

∂ z
=

∂ f (x1, x2)
∂ x1

∂ x1

∂ z
+

∂ f (x1, x2)
∂ x2

∂ x2

∂ z

= (3 + 2 x2
2 ) (5 + 2 w) + (4 x1 x2) (w2)

= (3 + 2 (z2 w4 + 6 z w3 + 9 w2) ) (5 + 2 w) + 4 (5z + 2z w) (z w2 + 3w ) w2

= (3 + 2 z2 w4 + 12 z w3 + 18w2) (5 + 2 w) + (20 z w2 + 8z w3) (z w2 + 3w )

= 15 + 6w + 10 z2 w4 + 4 z2 w5 + 60 z w3 + 24 z w4 + 90 w2 + 36w3

+ 20 z2 w4 + 60 z w3 + 8 z2 w5 + 24 zw4

= 15 + 6w + 90 w2 + 36w3 + 120 z w3 + 48 z w4 + 30 z2 w4 + 12 z2 w5

We can also find the partial of y with respect to w as

∂ y

∂ w
=

∂ f (x1, x2)
∂ x1

∂ x1

∂ w
+

∂ f (x1, x2)
∂ x2

∂ x2

∂ w

= (3 + 2 x2
2 ) (2 z) + (4 x1 x2) (2 z w + 3)

= (3 + 2 (z2 w4 + 6 z w3 + 9 w2) ) (2 z) + 4 (5z + 2z w) (z w2 + 3w ) (2 z w + 3)

= (3 + 2 z2 w4 + 12 z w3 + 18w2) (2 z) + (20 z + 8z w) (z w2 + 3w ) (2 z w + 3)

= (6z + 4 z3 w4 + 24 z2 w3 + 36 z w2) + (20 z2 w2 + 60 z w + 8z2 w3 + 24 z w2) (2 z w + 3)

= 6z + 4 z3 w4 + 24 z2 w3 + 36 z w2 + 40 z3 w3 + 120 z2 w2 + 16z3 w4 + 48 z2 w3

+ 60 z2 w2 + 180 z w + 24 z2 w3 + 72 z w2

= 6z + 180 z w + 108 z w2 + 180 z2 w2 + 96 z2 w3 + 40 z3 w3 + 20 z3 w4
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4. Linear Approximations and Differentials

4.1. Differentials. Consider a function y = f(x1, x2, ... , xn). If dx1, dx2, ... , dxn are arbitrary
real numbers (not necessarily small), we define the differential of y = f(x1, x2, ... , xn) as

dy =
∂ f

∂ x1
dx1 +

∂ f

∂ x2
dx2 + . . . +

∂ f

∂ xn
dxn (8)

When xi is changed to xi + dxi. then the actual change in the value of the function is the
increment

∆y = f (x1 + dx1, x2 + dx2, · · · , xn + dxn ) − f (x1, x2, · · · , xn) (9)

If dxi is small in absolute value, the ∆y can be approximated by dy

∆y ≈ dy =
∂ f

∂ x1
dx1 +

∂ f

∂ x2
dx2 + · · · +

∂ f

∂ xn
dxn (10)

4.2. Rules for differentials.

1: dc = 0 (c is a constant)
2: d(cxn) = cnxn−1 dx
3: d (a f + b g) = a df + b dg (a and b are constants)
4: d (f g) = g df + f dg

5: d
(

f
g

)
= g df − f dg

g2 , g 6= 0
6: d (f g h) = g h df + f h dg + f g dh
7: If y = g[ f(x1, x2, ... , xn) ] then dy = g’[ f(x1, x2, ... , xn) ] df.

4.3. Differentials and systems of equations.

4.3.1. Idea. We can find partial derivatives of implicit systems using differentials. We take the total
differential of both sides of each equation, set all differentials of variables that are not changing
equal to zero, and then divide each equation by the differential of the one exogenous variable that
is changing. We then solve the resulting system for the various partial derivatives.

4.3.2. Example 1. Consider the system

φ1(x1, x2, p, w1, w2) = 14 p − 2 p x1 − w1 = 0

φ2(x1, x2 p, w1, w2) = 11 p − 2 p x2 − w2 = 0
(11)

The total differential of each equation is

14 dp − 2 p dx1 − 2 x1 dp − d w1 = 0
11 dp − 2 p dx2 − 2 x2 dp − d w2 = 0

(12)

Now set dw1 = dw2 = 0 and divide each equation by dp

14 − 2 p
dx1

dp
− 2 x1 = 0

11 − 2 p
dx2

dp
− 2 x2 = 0

(13)

Solving we obtain
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2 p
∂x1

∂p
= 14 − 2 x1

⇒ ∂x1

∂p
=

14 − 2x1

2 p
=

7 − x1

p

2 p
∂x1

∂p
= 11 − 2 x1

⇒ ∂x2

∂p
=

11 − 2x1

2 p
=

5.5 − x2

p

(14)

4.3.3. Example 2. Consider the following macroeconomic model:

Y = C + I + G

C = f (Y − T )

I = h (r)

r = m (M )

(15)

The variables are defined as follows: Y is national income, C is consumption, I is investment,
G is public expenditure, T is tax revenue, r is the interest rate, and M is money supply. There
are seven variables and four equations so we can potentially solve for 4 endogenous variables in
terms of 3 exogenous variables. If we assume that f, h, and m are differentiable functions with
0 < f ′ < 1, h′ < 0, and m′ < 0, then these equations determine Y, C, I, and r as differentiable
functions of M, T, and G. We can also find the differentials of Y, C, I, and r in terms of the
differentials of M, T, and G. The total differential of the system is

dY = dC + dI + dG (16a)

dC = f ′(Y − T ) (dY − dT ) (16b)

dI = h′(r) dr (16c)

dr = m′(M ) dM (16d)

We need to solve this system for the differential changes dY, dC, dI, and dr in terms of the
differential changes dM, dT, and dG in the exogenous policy variables M, T, and G. From equations
16c and 16d, we can find dI and dr as follows

dr = m′(M ) dM

dI = h′(r) m′(M ) dM
(17)

Inserting the expression for dI from equation 17 into the first two equations in 16 gives

dY − dC = h′(r) m′(M ) dM + dG

f ′(Y − T ) dY − dC = f ′(Y − T ) dT
(18)

This gives two equations to determine the two unknowns dY and dC in terms of dM, dG, and
dT. We can write this in matrix form as follows

[
1 −1

f ′(Y − T ) −1

] [
d Y
d C

]
=
[

c h′(r) m′(M ) dM + dG
f ′(Y − T ) dT

]
(19)

We can use Cramer’s rule to solve this system. The determinant of the coefficient matrix is given
by
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D =
∣∣∣∣

1 −1
f ′ (Y − T ) −1

∣∣∣∣ = (−1) − (− f ′ (Y − T ) ) = f ′ (Y − T ) − 1 (20)

First solving for dY we obtain

dY =

∣∣∣∣
h′(r) m′(M ) dM + dG −1

f ′(Y − T ) dT −1

∣∣∣∣
∣∣∣∣

1 −1
f ′ (Y − T ) −1

∣∣∣∣
=

∣∣∣∣
h′(r) m′(M ) dM + dG −1

f ′(Y − T ) dT −1

∣∣∣∣
f ′ (Y − T ) − 1

⇒ dY =
−h′(r) m′(M ) dM − dG + f ′(Y − T ) dT

f ′ (Y − T ) − 1

=
−h′(r) m′(M )

f ′ (Y − T ) − 1
dM − 1

f ′ (Y − T ) − 1
dG +

f ′(Y − T )
f ′ (Y − T ) − 1

dT

=
h′m′

1 − f ′ dM − f ′

1 − f ′ dT +
1

1 − f ′ dG

(21)

Then solving for dC we obtain

dC =

∣∣∣∣
1 h′(r) m′(M ) dM + dG

f ′(Y − T ) f ′(Y − T ) dT

∣∣∣∣
∣∣∣∣

1 h′(r) m′(M ) dM + dG
f ′(Y − T ) f ′(Y − T ) dT

∣∣∣∣
f ′ (Y − T ) − 1

⇒ dC =
f ′(Y − T ) dT − h′(r) m′(M ) dM f ′(Y − T ) − dG f ′(Y − T )

f ′ (Y − T ) − 1

=
−h′(r) m′(M ) f ′(Y − T )

f ′ (Y − T ) − 1
dM − f ′(Y − T )

f ′ (Y − T ) − 1
dG +

f ′(Y − T )
f ′ (Y − T ) − 1

dT

=
f ′ h′ m′

1 − f ′ dM − f ′

1 − f ′ dT +
f ′

1 − f ′ dG

(22)
We have now found the differentials dY, dC, dI, and dr as linear functions of dM, dT, and dG. If

we set dM and dG equal to zero, then

dY = −
f ′

1 − f ′ dT

⇒ ∂ Y

∂ T
= − f ′

1 − f ′

(23)

Similarly ∂r/∂T=0 and ∂I/∂T=0. Because we assumed that 0 < f’ < 1, ∂Y/∂T =-f′(1 - f′)< 0.
If dM, dT, and dG are small in absolute value, then

∆Y = Y (M0 + dM, T0 + dT, G0 + dG) − Y (M0, T0, G0) ≈ dY
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